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ABSTRACT: Natural disasters such as floods can significantly impact agriculture, especially in rice crop areas. The 

synergy of optical and synthetic aperture radar (SAR) images can be utilized to monitor post-flood rice crop recovery. 

This study investigates the potential of using optical and SAR images to monitor rice crop recovery after a flood event in 

Kitcharao, Agusan del Norte. The study utilizes optical images from Sentinel-2 and SAR images from Sentinel-1. The 

images were pre-processed and then subjected to manual thresholding and layer stacking techniques to generate rice crop 

extent maps and flood maps. The accuracy of the rice crop maps and flood map was evaluated using the confusion matrix 

and kappa coefficient. The results revealed that only 2.25% of the rice crops survived a week after the flooding, indicating 

the extent of the damage caused by the flood. Furthermore, the recovery rate of rice crops after a month was only 8.89%, 

indicating that the damage caused by the flood had long-lasting effects on the crops. The study demonstrates the potential 

of using remote sensing techniques to monitor post-flood rice crop recovery and the importance of combining optical and 

SAR images for more accurate assessments.  

 

 

1. INTRODUCTION 

1.1 Background of the Study 

Agriculture is an essential component in preserving human societies. In addition, agricultural land accounts for 

approximately forty percent of the total land area on the planet and is continuously expanding (Nguyen et al., 2022). The 

Philippines has a total agricultural area of 9.67 million hectares, which accounts for approximately 30 percent of the 

country's total land area and is farmed by around 5 million farmers (Elauria, 2015). The Philippines is one of the countries 

in Southeast Asia affected frequently by natural disasters such as typhoons, floods, and droughts (Guha- Sapir, D., Below, 

R., Hoyois, 2015). These natural disasters negatively impact the afflicted areas and the local population in terms of the 

economy and environment. Moreover, natural disasters continually expose the agriculture and natural resource industries 

to detrimental effects, rendering them highly vulnerable (Jha et al., 2018). The country’s Department of Agriculture has 

reported that several regions incurred a cost of P37.68 million due to recent flood damage to agriculture (Pinlac, 2022). 

Floods caused by incessant rainfall have impacted at least 1,559 farmers, devastating 882 metric tons of crops across 

1,700 hectares of agricultural land (Pinlac, 2022). The conventional approaches for evaluating the recovery process of 

agriculture after floods are challenging and costly, impeding the prompt and efficient response to calamities. The 

utilization of remote sensing technologies presents a viable remedy by facilitating expeditious identification of the scope 

of flood damage and continuous real-time monitoring of the recovery process (Conde & De Mata Muñoz, 2019). Satellite 

images and diverse land cover classification techniques have been widely adopted in remote sensing studies to 
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differentiate and identify specific land cover information (Elauria, 2015; Nguyen et al., 2022). SAR technology in 

Sentinel-1 satellite data makes it highly advantageous for flood extent mapping due to its ability to operate in all weather 

conditions, capture images during both day and night and penetrate dense cloud cover (Torres et al., 2017). SAR data 

with high spatial resolution and dual-polarization backscattering can detect floodwaters and categorize flood-damaged 

land cover (Conde & De Mata Muñoz, 2019). Conversely, highly detailed spatial data for land cover can be obtained by 

optical images. Hence, the primary objective of this study is to map the post-flood recovery of rice croplands in the 

municipality of Kitcharao, Agusan del Norte using Sentinel-1 SAR and Sentinel-2 optical satellite images. Specifically, 

this study aims to map the extent of rice croplands during pre- and post-flooding using Sentinel-2 data, to assess the post-

recovery of rice croplands affected by the mapped flood, and to assess the accuracy and reliability of combining Sentinel-

1 SAR and Sentinel-2 optical satellite images in mapping rice crop recovery after a flood event. 

 

1.2 Study Area 

Kitcharao, Agusan del Norte, which covers a land area of 128.35 sq. km, consists of 11 barangays that are close to 

Lake Mainit (PhilAtlas, 2015). Most residents in the area rely on crop farming as their main source of livelihood and 

economic sustenance. During heavy rainfall, the water level in Lake Mainit rises due to inflows from nearby rivers, which 

can cause flooding in barangays close to the shoreline. Moreover, the region experienced significant flooding caused by 

seasonal rainfall in December 2022.  

 

 
Figure 1.1 Map of the study area 

2. MATERIALS AND METHODS 

2.1 Dataset 

Sentinel-1 SAR data acquired from the Copernicus open-access hub were systematically categorized into three groups: 

images taken before the inundation incident, images captured at the flood's peak, and images obtained several weeks to 

months after the flood. Rainfall data for the study area, sourced from the Department of Agriculture, were employed to 

determine the periods corresponding to the flood's peak event. Consequently, a cross-referencing analysis of the rainfall 

data and satellite imagery was conducted to accurately determine the periods during which the flood attained its maximum 

intensity. Sentinel-2 data were integrated to assess the extent of rice crops. In light of a significant flooding event on 

December 22, 2022, images captured between December 1 and December 22, 2022 were examined to assess the extent 

of rice crops before the flooding occurred. During the image selection process, priority was given to images with minimal 

cloud coverage to ensure a more precise and accurate representation of the study area. For the post-flooding analysis, 

satellite images obtained approximately one week following the flooding event, specifically on January 19, 2023, were 

utilized to evaluate the condition of the rice crops at that point in time. The purpose of this post-flood image acquisition 

was to document the immediate aftermath of the event and assess its impact on the rice fields. Additionally, to estimate 

the yield of the recovered rice crops, satellite images acquired in February 2023, approximately one month after the flood, 

were analyzed.  
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To effectively capture and analyze the fluctuations in rice crop extent before, during, and following the flood 

occurrence, careful selection of satellite images was observed. Tables 2.1 and 2.2 present the sensing period, satellite 

platform, product type, polarization, and sensor mode of acquired Sentinel-1 and Sentinel-2 satellite images, respectively. 

 

  

Table 2.1 Metadata of Acquired Sentinel-1 Images 

 
 

 

 

 

 

 

Table 2.2 Metadata of Acquired Sentinel-2 Images 

 

 

 

 

 

 

 

 

 

 

2.2 Methodology 

The initial phase entails the identification of areas that are affected by flooding, followed by the continuous monitoring 

of flood events. The researchers effectively differentiated between inundated and non-inundated regions by utilizing 

image processing techniques and thresholding methods. This methodology facilitates the observation and evaluation of 

changes in flood coverage over a period, thereby providing crucial insights into the flooding dynamics of the researched 

region. 

The subsequent step entails the extraction of rice coverage pre- and post-flooding occurrence. We employed remote 

sensing imagery to capture the spatial distribution of rice crops. The comparative analysis of images taken before and 

after a flood event enables the detection of regions that have undergone flood-related impacts. This particular step is 

crucial in obtaining essential information regarding the magnitude of rice loss, which in turn aids in evaluating the overall 

impact of the flood occurrence on agricultural productivity. 

The final step involves conducting accuracy assessments and performing statistical analyses. We thoroughly evaluated 

the accuracy of flood detection, rice extent mapping, and post-flood recovery approximation. This stage entails comparing 

the study's findings with ground truth data and utilizing statistical measures to quantify the reliability and precision of the 

results. The final output of this study is a map that shows the delineation of the regions impacted by flooding and 

showcases the surviving rice crops following the flood occurrence. 

 

Sensing Period Satellite 

Platform 

Product Type Polarization Sensor Mode 

Dec.21, 2022 S1A_* GRD VV+VH IW 

Jan. 2, 2023 S1A_* GRD VV+VH IW 

Feb 07, 2023 S1A_* GRD VV+VH IW 

Sensing Period Satellite Platform Product Type 

Dec. 12, 2022 S2B_MSIL2A S2MSI2A 

Jan. 16, 2023 S2A_MSIL2A S2MSI2A 

Feb. 25, 2023 S2A_MSIL2A S2MSI2A 
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Figure 2.1 Methodology flowchart 

 

2.2.1 Sentinel-1A and Sentinel-2 Pre-processing 

 

We collected Sentinel-1 satellite images before, during the flood peak, and a month after the flooding recedes. The 

images have undergone pre-processing, i.e. apply orbit file, calibrate, terrain correction/ geometric correction, and speckle 

filtering, to improve image data by suppressing unwanted noise and distortions and enhancing some image features that 

are important for future applications. Upon acquiring Sentinel-1A images with VH polarization, Sentinel Application 

Platform (SNAP) toolkit was used in the preprocessing phase to improve the quality and applicability of the images for 

subsequent analytical procedures. The SNAP toolkit is used extensively in remote sensing and offers diverse processing 

capabilities (McGarragh et al., 2015).  

Sentinel-2 images with less than 10% cloud coverage were used. The selected images showed  an unobstructed 

perspective of the rice crop's extent before the flood. The satellite images were downloaded using the filtering criteria. 

ENVI image analysis software was used for processing Sentinel-2 data. The software packages provide various tools and 

algorithms that enable to manipulate and extract information from satellite imagery (Canty, 2014). 

 

2.2.2 Flood Mapping and Monitoring 

 

Upon obtaining the pre-processed data, we focused on using the images for terrain filtering, thresholding, and accuracy 

assessment. The process of terrain filtering was implemented to remove extraneous characteristics and highlight the 

inundated rice fields, thereby facilitating a more accurate demarcation of their perimeters. Subsequently, thresholding 

techniques were implemented to partition the image and categorize the pixels into regions that are either inundated or 

non-inundated. The techniques encompass establishing a precise threshold value that discriminates between the two 

categories based on the backscatter intensity values. We meticulously established the ideal threshold to accurately 

recognize inundated rice paddies.  

For terrain filtering, we generated two datasets, the Height Above the Nearest Drainage (HAND) and the slope, using 

a Digital Elevation Model (DEM) with a resolution of 10 meters. The terrain filtering process and removing shadowy 

regions caused by radar interference relied crucially on these datasets. The HAND dataset explains the vertical difference 

between a pixel and the nearest water channel determined hydrologically. The topographic characteristics of the area are 

indicated by it, making it a valuable indicator. This study utilized the HAND dataset to identify and exclude topographical 

sections that were unlikely to be flooded. We combined a slope of 9 degrees with a HAND threshold of 30 meters to 

create the terrain filter. The radar caused shadowy areas, but the slope component removed them and ensured that further 

analysis only considered relevant regions. A more detailed DEM with a resolution of 5 meters was used to create the 

terrain filter. The higher-resolution DEM accurately represented the terrain features. We pre-processed the DEM and 

performed a series of watershed delineation processes. The pre-processing steps involved removing depressions or 

inconsistencies in the elevation data by filling sinks, calculating the direction of water flow and the water accumulation 

in each cell, identifying streams and pour points using the flow accumulation values, and linking the streams to create a 

continuous network. The delineated watersheds were divided into distinct drainage basins.  

The histogram binarization method is an effective approach commonly used in image processing(Wu et al., 2018). The 

underlying principle of thresholding is predicated on the assumption that there exists an apparent difference in the 

intensity or color between the objects in the foreground and the background within an image. The process involved the 

establishment of a threshold value, whereby pixels with intensities or color values surpassing the threshold are categorized 

as foreground, while those below the threshold are classified as background. The term "histogram-based binarization" 
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denotes a thresholding technique that relies on the histogram of the image. A histogram is a graphical representation of 

the distribution of pixel intensities or colors within an image. The process of histogram-based binarization entails 

examining the histogram in order to identify the most suitable threshold value that can accurately differentiate the 

foreground from the background. The histogram of the terrain filtered raster image as shown in Figure 2.3 offers a 

graphical illustration of the occurrence and distribution of pixel values present in the image. The histogram depicts the 

diversity in terrain attributes that have been extracted through the filtering procedure, facilitating an in-depth assessment 

of the image's terrain characteristics. Through careful examination of the histogram, significant information can be 

obtained with regard to the elevation, slope, or other pertinent terrain characteristics that are evident in the filtered raster 

image. We utilized the histogram of the image to determine an optimal threshold value that maximizes the differentiation 

between the foreground and background regions. This methodology utilizes the statistical characteristics of the pixel 

intensities or colors within an image to arrive at a well-informed determination of the threshold values.  

We employed the default reclassification tool in ArcGIS to help choose a threshold value and to classify the image. 

The reclassification tool converted the grayscale image to a binary image by assigning all pixels with intensity values 

greater than the threshold to white (255) and all other pixels to black (0). This conversion enabled us to differentiate 

between land and water areas. White areas represented the land, while black areas represented water. This allowed us to 

identify flooded and non-flooded areas, essential for post-flood recovery assessment. The researchers used the range: 

min-0.022 (for flooded) and 0.022 to max (for unflooded areas). Figure 2.3 shows the distribution of pixel values of the 

terrain-filtered Sentinel 1 image, where pixel values with the high frequencies represent the land, and a low pixel value 

represents the water areas. 

 
Figure 2.2 Raster Histogram of Terrain Filtered Sentinel-1 Image 

2.2.3 In-Situ Observation 

 

To ensure the accuracy of the identified flood areas, we conducted in-situ observations and collected ground 

coordinates. This involved gathering data directly from the field by physically visiting the study area. We sought 

assistance from various individuals and stakeholders to obtain ground points representing both flooded and non-flooded 

areas. Rice field owners, the Department of Agriculture, farmers, and residents played crucial roles in providing valuable 

information and facilitating the collection of ground coordinates. A combination of interviews and surveys was employed 

to collect primary data on the scope and geographic distribution of the inundated areas. Reliable and precise data were 

acquired through direct involvement with the neighbouring community. 

Through consultation with the appropriate department, valuable insights were obtained regarding the incidence and 

extent of flooding in the region. The concern department provided the list of names of the owners of rice fields impacted 

by flooding. By collaborating with these stakeholders, we were able to obtain firsthand observations and measurements 

of the actual flooded and non-flooded areas within the study region. The ground coordinates collected through these in-

situ observations served as reference points for validating and verifying the accuracy of the flood areas identified through 

remote sensing techniques. This approach ensured that the analysis and mapping of flood areas were not solely reliant on 

satellite imagery and computational methods. The integration of ground observations and local knowledge enhanced the 

reliability and credibility of the research findings, as it involved direct validation against real-world conditions.  

 
2.2.4 Accuracy Assessment 

 

A confusion matrix is a useful tool in classification tasks for evaluating a predictive model's performance. It is a square 

matrix that shows true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). This matrix 
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helps you understand how well your model is doing by comparing predicted labels to actual labels in your dataset. Overall 

Accuracy tells you the proportion of correctly classified items compared to the total number of items. To calculate 

accuracy, divide the count of correctly classified items (found on the diagonal of the confusion matrix) by the total number 

of items and then multiply by 100. Precision, also known as User Accuracy, measures the proportion of correctly classified 

items in each category relative to the total number of classified items in that category. To calculate precision, divide the 

count of correctly classified items in each category by the total count of classified items in that category, and then multiply 

by 100. Producer Accuracy, also called Recall or Sensitivity, quantifies the proportion of correctly classified items in 

each category relative to the total number of items in that category (the column total). To calculate it, divide the count of 

correctly identified items in each category by the total count of items in that category and then multiply by 100. Analyzing 

various metrics from the confusion matrix is essential for interpretation. One such metric is the Kappa coefficient (Cohen's 

kappa), which measures the agreement between predicted and actual labels while considering chance agreement. The 

Kappa coefficient ranges from -1 to 1, with different values indicating different levels of agreement. It provides a numeric 

assessment of agreement beyond what could be due to chance. Higher Kappa values indicate stronger agreement between 

model predictions and actual labels, while lower values suggest weaker agreement or random predictions. Evaluating 

these metrics helps assess the reliability of the classification model and the consistency between predicted and actual 

labels. 

 
2.2.5 Land Cover Mapping 

 

Sentinel-2 satellite imagery was utilized to generate a detailed map of rice cultivation in a specific area. Various spectral 

bands such as true color, near-infrared, shortwave infrared, and Normalized Difference Vegetation Index (NDVI) were 

employed for analysis. Specifically, the focus was placed on the near-infrared and red bands with a 10-meter resolution 

for image processing. The shortwave infrared bands were also subjected to resampling to achieve a 20-meter resolution. 

The calculation of the NDVI for vegetation assessment was carried out. 

To enhance precision, the analysis area was narrowed down, and terrain filtering was applied. A support vector machine 

(SVM) classifier was trained using labeled samples to classify land cover categories like rice fields. Accuracy metrics 

(user accuracy and producer's accuracy) were employed to assess classification precision. Contextual editing in ArcGIS 

software was used to rectify misclassifications, particularly those associated with pixel similarities between rice crops 

and other vegetation. Various data sources, including in-situ observations and established references, were cross-

referenced to ensure unbiased and accurate editing. The resulting land cover map accurately depicted rice farming in the 

region. Figure 2.3 illustrates the distribution of rice crops in the Caraga Region based on the PhilRice Map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3 Rice Crop Map of Caraga Region Source: PhilRice 
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2.2.6 Flood Recovery Mapping 

 

To evaluate the recovery of rice crops following flood damage, a series of methods were employed to analyze different 

growth stages of the crops. Initially, masking and overlaying techniques were used to isolate and extract the pre-flood 

extent of rice fields, achieved by clipping the relevant portions from the categorized flood image. This precise process 

identified the areas that had been flooded. Subsequently, we overlaid the pre-flood extracted rice extent onto images 

captured in January and February. This overlay operation enabled the distinction between regions where crops had 

recovered and those with limited or no recovery. Visual examination of these overlapping areas provided insights into the 

extent and pattern of recovery in the affected rice fields. 

To quantify recovery, a straightforward mathematical calculation was applied. By comparing the areas of recovered 

crops to the total pre-flood rice field extent, the researchers determined the percentage of crop recovery. This metric 

quantified the extent to which rice crops had rebounded after the flood. Estimating post-flood rice crop recovery involves 

employing various techniques and rigorous analysis. The masking and overlaying techniques played a vital role in 

identifying flood-affected areas and assessing subsequent recovery. These methods allowed for the quantification of flood 

impact and offered valuable insights into the resilience and regrowth of rice crops in the affected regions. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Flood Mapping 

Terrain filtering in hydrology plays a critical role in extracting essential data from digital elevation models (DEMs) 

and assessing hydrologic features. This method involves applying diverse filters to the DEM, like slope and curvature 

measurements, to highlight specific topographic characteristics, aiding in the identification of hydrologic elements such 

as watersheds and flow directions. One widely used technique, the Digital Elevation Model-based Hydrological Analysis 

Utility (DEM-H), integrated into the Terrain Analysis Using Digital Elevation Models (TauDEM) software, detects water 

flow orientation, stream channels, and watershed boundaries. Terrain filtering is pivotal for efficient watershed 

management and precise floodplain mapping for identifying flooded croplands in Kitchararao Agusan del Norte. We 

improved DEM accuracy by addressing inconsistencies, focusing on slopes and depressions, and filling terrain sinks that 

hindered water outflow. Flow directions, estimated flow accumulation, and identified primary stream channels were 

determined, enriching the understanding of hydrological dynamics and topographical variations for flood risk assessment 

within the study area. Following raster calculations, non-zero values were extracted and transformed into polygon features, 

indicating areas susceptible to flooding based on established parameters. To comprehensively depict flood-prone regions, 

multiple polygon feature classes were merged into a single feature class for the area of interest. Although this combined 

feature class offers a visually appealing representation, additional modifications are needed to enhance accuracy. 

Contextual adjustments improve polygon precision by addressing boundaries and attributes. The objective was to 

accurately represent topography and flood hazards. Contextual modification aligns polygon boundaries and properties 

with topographic characteristics, enhancing accuracy. The result is a unified polygon feature class that accurately depicts 

flood-prone areas.  

Applying a mask to the original image highlights areas prone to flooding, resulting in the masked image shown in 

Figure 3.1 (d). The mask is created based on predefined criteria like pixel brightness, color, or texture, which define flood-

prone characteristics. This process involves filtering and identifying regions of interest in the image, isolating areas 

meeting the criteria for potential flooding. To create the mask, specific thresholds or image processing techniques are 

used to extract relevant information and highlight regions of interest in the original image. The masked image shows only 

the selected areas that meet the established criteria, allowing for a focused analysis of flood-prone regions. Researchers 

assess each pixel in the masked image by comparing its properties to the predefined thresholds. Pixels meeting or 

exceeding these values are highlighted as part of the flooded area. This pixel-by-pixel evaluation identifies sections that 

meet the conditions for potential flooding, providing valuable insights for flood mapping, disaster response planning, and 

mitigation strategies. Accurately delineating flooded and non-flooded regions involves determining the appropriate 

thresholding range through iterative testing and consideration of various factors. Initially using a default classification 

method, we found it overestimated the flooded area, prompting a comprehensive evaluation process to optimize the 

thresholding range. Binarization was employed to separate flooded and non-flooded areas based on pixel values, with 

iterative adjustments made to achieve optimal results. The final thresholding range was set as min-0.022 and 0.22-max, 

accurately distinguishing the flooded area from the non-flooded zone while minimizing false positives. This balanced 

approach considered specific flooding characteristics and facilitated subsequent analysis of the flooding event's extent 

and features, as illustrated in Figure 3.2. 
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Figure 3.2 Raster Histogram of the Terrain Filtered Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Flood and Non-Flood Accuracy Assessment 

Figure 3.3 shows a map with ground truth sites used to validate flood mapping. These sites were determined through 

interviews with residents and damage reports from the Department of Agriculture in Kitcharao. They served as reference 

points for assessing the accuracy of flood mapping techniques. We compared the mapped flood extent from remote 

sensing data to on-site ground truth data to ensure accurate flood mapping. Table 4 provides the mean elevation values 

for the validation points categorized into inundated and non-inundated areas. The mean elevation for the inundated 

validation points is 44.71233954 ft, while the mean elevation for the non-inundated points is 47.0661427 ft. These mean 

elevation values served as a quantitative measure to distinguish the difference in elevation between areas affected by 

flooding and those unaffected. The overall accuracy of the flood map is 94% percent with kappa value of 0.88. This 

indicates that the  method of delineating flood map passed the accuracy assessment, thus making the flood map and the 

method itself, reliable. 

 

(d) (c) 

(a) 
(b) 

Figure 3.1 Process of Acquiring Image for Thresholding. (a) Pre-processed Sentinel-1, (b) Output of 

Terrain Filter, (c) Masking of a and b, (d) Image for Thresholding 
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3.3 Rice Crop Mapping 

Figure 3.4 shows the rice crop 

extent in December, revealing early 

growth stages before flooding. 

Figure 3.5 displays rice crops in 

January, highlighting those planted 

before flooding. Figure 3.6 depicts 

rice crops one month after floods, 

including newly planted and 

recovering fields. These maps 

provide insights into rice cultivation 

throughout the season and flood 

impacts, aiding decisions on recovery 

and resource management. 

 

 

 

 

 

 

 

Figure 3.3 Map of the Validation Points of Flood and Non-flood areas 

Figure 3.4 Rice Map for the month of December Figure 3.4 Rice Map for the month of January 

Figure 3.6 Rice Map for the month of February Figure 3.7 Overlaying of Flood and Non-Flood in the Boundary 

of Kitcharao, Agusan del Norte 
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3.4 Flood Recovery Mapping  

Figure 3.7 depicts the boundaries of rice fields and shows the extent of flooding over these areas, illustrating the impact 

of floods on agriculture. It visually connects rice field boundaries with the flooded regions, enhancing understanding of 

flooding's effect on rice cultivation and aiding decisions in agriculture and disaster management. The findings reveal a 

substantial decrease in rice crop area from December (882,161.00 square meters) to January (19,880 square meters) and 

February (78,439 square meters), primarily due to recurrent flooding. The data show that only 2.25% of rice crops 

survived a week after the flooding, with a recovery rate of 8.89% after a month, indicating the prolonged impact of the 

flood. These results emphasize the need for effective post-flood agricultural strategies to promote crop recovery and 

resilience against natural disasters. The study's data can inform such strategies, emphasizing the importance of further 

research on flood effects on agriculture.  

 

4. CONCLUSIONS AND RECOMMENDATIONS 

The integration of optical and SAR images enhances flood damage assessment and rice crop recovery monitoring for 

farmers. The accuracy of the rice crop extent maps, validated with ground truth data, emphasized the reliability of the 

mapping method. The study revealed varying rice crop recovery across barangays, highlighting the need for tailored 

strategies. Combining remote sensing with ground-based data, including interviews and damage reports, provides a 

comprehensive understanding of recovery. This interdisciplinary approach ensures precise maps and informed decision-

making in agriculture, resource allocation, and disaster management. The study showcases remote sensing's potential in 

post-flood crop recovery monitoring, aiding farmers and promoting flood resilience and food security in vulnerable 

regions. The study's results indicate that monitoring and assessing crop recovery after floods can be achieved by utilizing 

existing Sentinel-1 and Sentinel-2 satellite imagery along with RS and GIS techniques. It is important to acknowledge 

the study's limitations, particularly regarding data availability. One significant limitation is the impact of cloud cover on 

optical imagery, which can hinder accurate post-flood recovery assessment. Cloud cover obstructs the view of the Earth's 

surface and makes it challenging to analyze and validate results based solely on optical imagery. To overcome this 

limitation and improve the accuracy of post-flood recovery assessments, it is recommended to combine high-resolution 

images with ground truth data. High-resolution images provide a more detailed depiction of the terrain, enabling a more 

precise validation of the recovery status of agricultural lands. 
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